Metamath Proof Explorer


Theorem difexi

Description: Existence of a difference, inference version of difexg . (Contributed by Glauco Siliprandi, 3-Mar-2021) (Revised by AV, 26-Mar-2021)

Ref Expression
Hypothesis difexi.1
|- A e. _V
Assertion difexi
|- ( A \ B ) e. _V

Proof

Step Hyp Ref Expression
1 difexi.1
 |-  A e. _V
2 difexg
 |-  ( A e. _V -> ( A \ B ) e. _V )
3 1 2 ax-mp
 |-  ( A \ B ) e. _V