Metamath Proof Explorer


Theorem vtoclga

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023)

Ref Expression
Hypotheses vtoclga.1
|- ( x = A -> ( ph <-> ps ) )
vtoclga.2
|- ( x e. B -> ph )
Assertion vtoclga
|- ( A e. B -> ps )

Proof

Step Hyp Ref Expression
1 vtoclga.1
 |-  ( x = A -> ( ph <-> ps ) )
2 vtoclga.2
 |-  ( x e. B -> ph )
3 eleq1
 |-  ( x = A -> ( x e. B <-> A e. B ) )
4 3 1 imbi12d
 |-  ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) )
5 4 2 vtoclg
 |-  ( A e. B -> ( A e. B -> ps ) )
6 5 pm2.43i
 |-  ( A e. B -> ps )