| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtocl2ga.1 |
|- ( x = A -> ( ph <-> ps ) ) |
| 2 |
|
vtocl2ga.2 |
|- ( y = B -> ( ps <-> ch ) ) |
| 3 |
|
vtocl2ga.3 |
|- ( ( x e. C /\ y e. D ) -> ph ) |
| 4 |
2
|
imbi2d |
|- ( y = B -> ( ( A e. C -> ps ) <-> ( A e. C -> ch ) ) ) |
| 5 |
1
|
imbi2d |
|- ( x = A -> ( ( y e. D -> ph ) <-> ( y e. D -> ps ) ) ) |
| 6 |
3
|
ex |
|- ( x e. C -> ( y e. D -> ph ) ) |
| 7 |
5 6
|
vtoclga |
|- ( A e. C -> ( y e. D -> ps ) ) |
| 8 |
7
|
com12 |
|- ( y e. D -> ( A e. C -> ps ) ) |
| 9 |
4 8
|
vtoclga |
|- ( B e. D -> ( A e. C -> ch ) ) |
| 10 |
9
|
impcom |
|- ( ( A e. C /\ B e. D ) -> ch ) |