Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtoclga
Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM , 20-Aug-1995) Avoid ax-10 and ax-11 . (Revised by Gino Giotto , 20-Aug-2023)
Ref
Expression
Hypotheses
vtoclga.1
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
vtoclga.2
⊢ ( 𝑥 ∈ 𝐵 → 𝜑 )
Assertion
vtoclga
⊢ ( 𝐴 ∈ 𝐵 → 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
vtoclga.1
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
2
vtoclga.2
⊢ ( 𝑥 ∈ 𝐵 → 𝜑 )
3
eleq1
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) )
4
3 1
imbi12d
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) )
5
4 2
vtoclg
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐵 → 𝜓 ) )
6
5
pm2.43i
⊢ ( 𝐴 ∈ 𝐵 → 𝜓 )