Metamath Proof Explorer


Theorem vtoclga

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023)

Ref Expression
Hypotheses vtoclga.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
vtoclga.2 ( 𝑥𝐵𝜑 )
Assertion vtoclga ( 𝐴𝐵𝜓 )

Proof

Step Hyp Ref Expression
1 vtoclga.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 vtoclga.2 ( 𝑥𝐵𝜑 )
3 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
4 3 1 imbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐵𝜑 ) ↔ ( 𝐴𝐵𝜓 ) ) )
5 4 2 vtoclg ( 𝐴𝐵 → ( 𝐴𝐵𝜓 ) )
6 5 pm2.43i ( 𝐴𝐵𝜓 )