Metamath Proof Explorer


Theorem sbcie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004)

Ref Expression
Hypotheses sbcie.1
|- A e. _V
sbcie.2
|- ( x = A -> ( ph <-> ps ) )
Assertion sbcie
|- ( [. A / x ]. ph <-> ps )

Proof

Step Hyp Ref Expression
1 sbcie.1
 |-  A e. _V
2 sbcie.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 sbcieg
 |-  ( A e. _V -> ( [. A / x ]. ph <-> ps ) )
4 1 3 ax-mp
 |-  ( [. A / x ]. ph <-> ps )