Metamath Proof Explorer


Theorem sbcie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004)

Ref Expression
Hypotheses sbcie.1 𝐴 ∈ V
sbcie.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion sbcie ( [ 𝐴 / 𝑥 ] 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 sbcie.1 𝐴 ∈ V
2 sbcie.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 2 sbcieg ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) )
4 1 3 ax-mp ( [ 𝐴 / 𝑥 ] 𝜑𝜓 )