Metamath Proof Explorer


Theorem rexdif1en

Description: If a set is equinumerous to a nonzero finite ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024)

Ref Expression
Assertion rexdif1en M ω A suc M x A A x M

Proof

Step Hyp Ref Expression
1 bren A suc M f f : A 1-1 onto suc M
2 19.42v f M ω f : A 1-1 onto suc M M ω f f : A 1-1 onto suc M
3 sucidg M ω M suc M
4 f1ocnvdm f : A 1-1 onto suc M M suc M f -1 M A
5 4 ancoms M suc M f : A 1-1 onto suc M f -1 M A
6 3 5 sylan M ω f : A 1-1 onto suc M f -1 M A
7 vex f V
8 dif1enlem f V M ω f : A 1-1 onto suc M A f -1 M M
9 7 8 mp3an1 M ω f : A 1-1 onto suc M A f -1 M M
10 sneq x = f -1 M x = f -1 M
11 10 difeq2d x = f -1 M A x = A f -1 M
12 11 breq1d x = f -1 M A x M A f -1 M M
13 12 rspcev f -1 M A A f -1 M M x A A x M
14 6 9 13 syl2anc M ω f : A 1-1 onto suc M x A A x M
15 14 exlimiv f M ω f : A 1-1 onto suc M x A A x M
16 2 15 sylbir M ω f f : A 1-1 onto suc M x A A x M
17 1 16 sylan2b M ω A suc M x A A x M