Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024) Generalize to all ordinals and avoid ax-un . (Revised by BTernaryTau, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | rexdif1en | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv | |
|
2 | 1 | simpld | |
3 | breng | |
|
4 | 1 3 | syl | |
5 | 4 | ibi | |
6 | sucidg | |
|
7 | f1ocnvdm | |
|
8 | 7 | ancoms | |
9 | 6 8 | sylan | |
10 | 9 | adantll | |
11 | vex | |
|
12 | dif1enlem | |
|
13 | 11 12 | mp3anl1 | |
14 | sneq | |
|
15 | 14 | difeq2d | |
16 | 15 | breq1d | |
17 | 16 | rspcev | |
18 | 10 13 17 | syl2anc | |
19 | 18 | ex | |
20 | 19 | exlimdv | |
21 | 5 20 | syl5 | |
22 | 2 21 | sylan | |
23 | 22 | ancoms | |
24 | 23 | syldbl2 | |