Metamath Proof Explorer


Theorem rexdif1en

Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024) Generalize to all ordinals and avoid ax-un . (Revised by BTernaryTau, 5-Jan-2025)

Ref Expression
Assertion rexdif1en MOnAsucMxAAxM

Proof

Step Hyp Ref Expression
1 encv AsucMAVsucMV
2 1 simpld AsucMAV
3 breng AVsucMVAsucMff:A1-1 ontosucM
4 1 3 syl AsucMAsucMff:A1-1 ontosucM
5 4 ibi AsucMff:A1-1 ontosucM
6 sucidg MOnMsucM
7 f1ocnvdm f:A1-1 ontosucMMsucMf-1MA
8 7 ancoms MsucMf:A1-1 ontosucMf-1MA
9 6 8 sylan MOnf:A1-1 ontosucMf-1MA
10 9 adantll AVMOnf:A1-1 ontosucMf-1MA
11 vex fV
12 dif1enlem fVAVMOnf:A1-1 ontosucMAf-1MM
13 11 12 mp3anl1 AVMOnf:A1-1 ontosucMAf-1MM
14 sneq x=f-1Mx=f-1M
15 14 difeq2d x=f-1MAx=Af-1M
16 15 breq1d x=f-1MAxMAf-1MM
17 16 rspcev f-1MAAf-1MMxAAxM
18 10 13 17 syl2anc AVMOnf:A1-1 ontosucMxAAxM
19 18 ex AVMOnf:A1-1 ontosucMxAAxM
20 19 exlimdv AVMOnff:A1-1 ontosucMxAAxM
21 5 20 syl5 AVMOnAsucMxAAxM
22 2 21 sylan AsucMMOnAsucMxAAxM
23 22 ancoms MOnAsucMAsucMxAAxM
24 23 syldbl2 MOnAsucMxAAxM