Metamath Proof Explorer


Theorem f1ocnvdm

Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006)

Ref Expression
Assertion f1ocnvdm F:A1-1 ontoBCBF-1CA

Proof

Step Hyp Ref Expression
1 f1ocnv F:A1-1 ontoBF-1:B1-1 ontoA
2 f1of F-1:B1-1 ontoAF-1:BA
3 1 2 syl F:A1-1 ontoBF-1:BA
4 3 ffvelcdmda F:A1-1 ontoBCBF-1CA