| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							encv | 
							⊢ ( 𝐴  ≈  suc  𝑀  →  ( 𝐴  ∈  V  ∧  suc  𝑀  ∈  V ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							simpld | 
							⊢ ( 𝐴  ≈  suc  𝑀  →  𝐴  ∈  V )  | 
						
						
							| 3 | 
							
								
							 | 
							breng | 
							⊢ ( ( 𝐴  ∈  V  ∧  suc  𝑀  ∈  V )  →  ( 𝐴  ≈  suc  𝑀  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc  𝑀 ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							syl | 
							⊢ ( 𝐴  ≈  suc  𝑀  →  ( 𝐴  ≈  suc  𝑀  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc  𝑀 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ibi | 
							⊢ ( 𝐴  ≈  suc  𝑀  →  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  | 
						
						
							| 6 | 
							
								
							 | 
							sucidg | 
							⊢ ( 𝑀  ∈  On  →  𝑀  ∈  suc  𝑀 )  | 
						
						
							| 7 | 
							
								
							 | 
							f1ocnvdm | 
							⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ suc  𝑀  ∧  𝑀  ∈  suc  𝑀 )  →  ( ◡ 𝑓 ‘ 𝑀 )  ∈  𝐴 )  | 
						
						
							| 8 | 
							
								7
							 | 
							ancoms | 
							⊢ ( ( 𝑀  ∈  suc  𝑀  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ( ◡ 𝑓 ‘ 𝑀 )  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							sylan | 
							⊢ ( ( 𝑀  ∈  On  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ( ◡ 𝑓 ‘ 𝑀 )  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantll | 
							⊢ ( ( ( 𝐴  ∈  V  ∧  𝑀  ∈  On )  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ( ◡ 𝑓 ‘ 𝑀 )  ∈  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							vex | 
							⊢ 𝑓  ∈  V  | 
						
						
							| 12 | 
							
								
							 | 
							dif1enlem | 
							⊢ ( ( ( 𝑓  ∈  V  ∧  𝐴  ∈  V  ∧  𝑀  ∈  On )  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ( 𝐴  ∖  { ( ◡ 𝑓 ‘ 𝑀 ) } )  ≈  𝑀 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							mp3anl1 | 
							⊢ ( ( ( 𝐴  ∈  V  ∧  𝑀  ∈  On )  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ( 𝐴  ∖  { ( ◡ 𝑓 ‘ 𝑀 ) } )  ≈  𝑀 )  | 
						
						
							| 14 | 
							
								
							 | 
							sneq | 
							⊢ ( 𝑥  =  ( ◡ 𝑓 ‘ 𝑀 )  →  { 𝑥 }  =  { ( ◡ 𝑓 ‘ 𝑀 ) } )  | 
						
						
							| 15 | 
							
								14
							 | 
							difeq2d | 
							⊢ ( 𝑥  =  ( ◡ 𝑓 ‘ 𝑀 )  →  ( 𝐴  ∖  { 𝑥 } )  =  ( 𝐴  ∖  { ( ◡ 𝑓 ‘ 𝑀 ) } ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							breq1d | 
							⊢ ( 𝑥  =  ( ◡ 𝑓 ‘ 𝑀 )  →  ( ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀  ↔  ( 𝐴  ∖  { ( ◡ 𝑓 ‘ 𝑀 ) } )  ≈  𝑀 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rspcev | 
							⊢ ( ( ( ◡ 𝑓 ‘ 𝑀 )  ∈  𝐴  ∧  ( 𝐴  ∖  { ( ◡ 𝑓 ‘ 𝑀 ) } )  ≈  𝑀 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 )  | 
						
						
							| 18 | 
							
								10 13 17
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐴  ∈  V  ∧  𝑀  ∈  On )  ∧  𝑓 : 𝐴 –1-1-onto→ suc  𝑀 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 )  | 
						
						
							| 19 | 
							
								18
							 | 
							ex | 
							⊢ ( ( 𝐴  ∈  V  ∧  𝑀  ∈  On )  →  ( 𝑓 : 𝐴 –1-1-onto→ suc  𝑀  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							exlimdv | 
							⊢ ( ( 𝐴  ∈  V  ∧  𝑀  ∈  On )  →  ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ suc  𝑀  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) )  | 
						
						
							| 21 | 
							
								5 20
							 | 
							syl5 | 
							⊢ ( ( 𝐴  ∈  V  ∧  𝑀  ∈  On )  →  ( 𝐴  ≈  suc  𝑀  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) )  | 
						
						
							| 22 | 
							
								2 21
							 | 
							sylan | 
							⊢ ( ( 𝐴  ≈  suc  𝑀  ∧  𝑀  ∈  On )  →  ( 𝐴  ≈  suc  𝑀  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ancoms | 
							⊢ ( ( 𝑀  ∈  On  ∧  𝐴  ≈  suc  𝑀 )  →  ( 𝐴  ≈  suc  𝑀  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							syldbl2 | 
							⊢ ( ( 𝑀  ∈  On  ∧  𝐴  ≈  suc  𝑀 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 )  |