| Step | Hyp | Ref | Expression | 
						
							| 1 |  | encv | ⊢ ( 𝐴  ≈  𝐵  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 2 |  | f1ofn | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵  →  𝑓  Fn  𝐴 ) | 
						
							| 3 |  | fndm | ⊢ ( 𝑓  Fn  𝐴  →  dom  𝑓  =  𝐴 ) | 
						
							| 4 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 5 | 4 | dmex | ⊢ dom  𝑓  ∈  V | 
						
							| 6 | 3 5 | eqeltrrdi | ⊢ ( 𝑓  Fn  𝐴  →  𝐴  ∈  V ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵  →  𝐴  ∈  V ) | 
						
							| 8 |  | f1ofo | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵  →  𝑓 : 𝐴 –onto→ 𝐵 ) | 
						
							| 9 |  | forn | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  ran  𝑓  =  𝐵 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵  →  ran  𝑓  =  𝐵 ) | 
						
							| 11 | 4 | rnex | ⊢ ran  𝑓  ∈  V | 
						
							| 12 | 10 11 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵  →  𝐵  ∈  V ) | 
						
							| 13 | 7 12 | jca | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 14 | 13 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 15 |  | breng | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴  ≈  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) | 
						
							| 16 | 1 14 15 | pm5.21nii | ⊢ ( 𝐴  ≈  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |