| Step | Hyp | Ref | Expression | 
						
							| 1 |  | encv |  |-  ( A ~~ B -> ( A e. _V /\ B e. _V ) ) | 
						
							| 2 |  | f1ofn |  |-  ( f : A -1-1-onto-> B -> f Fn A ) | 
						
							| 3 |  | fndm |  |-  ( f Fn A -> dom f = A ) | 
						
							| 4 |  | vex |  |-  f e. _V | 
						
							| 5 | 4 | dmex |  |-  dom f e. _V | 
						
							| 6 | 3 5 | eqeltrrdi |  |-  ( f Fn A -> A e. _V ) | 
						
							| 7 | 2 6 | syl |  |-  ( f : A -1-1-onto-> B -> A e. _V ) | 
						
							| 8 |  | f1ofo |  |-  ( f : A -1-1-onto-> B -> f : A -onto-> B ) | 
						
							| 9 |  | forn |  |-  ( f : A -onto-> B -> ran f = B ) | 
						
							| 10 | 8 9 | syl |  |-  ( f : A -1-1-onto-> B -> ran f = B ) | 
						
							| 11 | 4 | rnex |  |-  ran f e. _V | 
						
							| 12 | 10 11 | eqeltrrdi |  |-  ( f : A -1-1-onto-> B -> B e. _V ) | 
						
							| 13 | 7 12 | jca |  |-  ( f : A -1-1-onto-> B -> ( A e. _V /\ B e. _V ) ) | 
						
							| 14 | 13 | exlimiv |  |-  ( E. f f : A -1-1-onto-> B -> ( A e. _V /\ B e. _V ) ) | 
						
							| 15 |  | breng |  |-  ( ( A e. _V /\ B e. _V ) -> ( A ~~ B <-> E. f f : A -1-1-onto-> B ) ) | 
						
							| 16 | 1 14 15 | pm5.21nii |  |-  ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |