Metamath Proof Explorer


Theorem bren

Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998) (Proof shortened by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion bren A B f f : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 encv A B A V B V
2 f1ofn f : A 1-1 onto B f Fn A
3 fndm f Fn A dom f = A
4 vex f V
5 4 dmex dom f V
6 3 5 eqeltrrdi f Fn A A V
7 2 6 syl f : A 1-1 onto B A V
8 f1ofo f : A 1-1 onto B f : A onto B
9 forn f : A onto B ran f = B
10 8 9 syl f : A 1-1 onto B ran f = B
11 4 rnex ran f V
12 10 11 eqeltrrdi f : A 1-1 onto B B V
13 7 12 jca f : A 1-1 onto B A V B V
14 13 exlimiv f f : A 1-1 onto B A V B V
15 breng A V B V A B f f : A 1-1 onto B
16 1 14 15 pm5.21nii A B f f : A 1-1 onto B