Metamath Proof Explorer


Theorem f1ofo

Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004)

Ref Expression
Assertion f1ofo F:A1-1 ontoBF:AontoB

Proof

Step Hyp Ref Expression
1 dff1o3 F:A1-1 ontoBF:AontoBFunF-1
2 1 simplbi F:A1-1 ontoBF:AontoB