Metamath Proof Explorer


Theorem f1ofo

Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004)

Ref Expression
Assertion f1ofo ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴onto𝐵 )

Proof

Step Hyp Ref Expression
1 dff1o3 ( 𝐹 : 𝐴1-1-onto𝐵 ↔ ( 𝐹 : 𝐴onto𝐵 ∧ Fun 𝐹 ) )
2 1 simplbi ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴onto𝐵 )