Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1ofn
Next ⟩
f1ofun
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1ofn
Description:
A one-to-one onto mapping is function on its domain.
(Contributed by
NM
, 12-Dec-2003)
Ref
Expression
Assertion
f1ofn
⊢
F
:
A
⟶
1-1 onto
B
→
F
Fn
A
Proof
Step
Hyp
Ref
Expression
1
f1of
⊢
F
:
A
⟶
1-1 onto
B
→
F
:
A
⟶
B
2
1
ffnd
⊢
F
:
A
⟶
1-1 onto
B
→
F
Fn
A