Metamath Proof Explorer


Theorem f1ofn

Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003)

Ref Expression
Assertion f1ofn ( 𝐹 : 𝐴1-1-onto𝐵𝐹 Fn 𝐴 )

Proof

Step Hyp Ref Expression
1 f1of ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴𝐵 )
2 1 ffnd ( 𝐹 : 𝐴1-1-onto𝐵𝐹 Fn 𝐴 )