Metamath Proof Explorer


Theorem breng

Description: Equinumerosity relation. This variation of bren does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998) Extract from a subproof of bren . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion breng AVBWABff:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 f1oeq2 x=Af:x1-1 ontoyf:A1-1 ontoy
2 1 exbidv x=Aff:x1-1 ontoyff:A1-1 ontoy
3 f1oeq3 y=Bf:A1-1 ontoyf:A1-1 ontoB
4 3 exbidv y=Bff:A1-1 ontoyff:A1-1 ontoB
5 df-en =xy|ff:x1-1 ontoy
6 2 4 5 brabg AVBWABff:A1-1 ontoB