Metamath Proof Explorer


Theorem f1oeq2

Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1oeq2 A=BF:A1-1 ontoCF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 f1eq2 A=BF:A1-1CF:B1-1C
2 foeq2 A=BF:AontoCF:BontoC
3 1 2 anbi12d A=BF:A1-1CF:AontoCF:B1-1CF:BontoC
4 df-f1o F:A1-1 ontoCF:A1-1CF:AontoC
5 df-f1o F:B1-1 ontoCF:B1-1CF:BontoC
6 3 4 5 3bitr4g A=BF:A1-1 ontoCF:B1-1 ontoC