Step |
Hyp |
Ref |
Expression |
1 |
|
encv |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
2 |
|
f1ofn |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 Fn 𝐴 ) |
3 |
|
fndm |
⊢ ( 𝑓 Fn 𝐴 → dom 𝑓 = 𝐴 ) |
4 |
|
vex |
⊢ 𝑓 ∈ V |
5 |
4
|
dmex |
⊢ dom 𝑓 ∈ V |
6 |
3 5
|
eqeltrrdi |
⊢ ( 𝑓 Fn 𝐴 → 𝐴 ∈ V ) |
7 |
2 6
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐴 ∈ V ) |
8 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) |
9 |
|
forn |
⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ran 𝑓 = 𝐵 ) |
10 |
8 9
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ran 𝑓 = 𝐵 ) |
11 |
4
|
rnex |
⊢ ran 𝑓 ∈ V |
12 |
10 11
|
eqeltrrdi |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 ∈ V ) |
13 |
7 12
|
jca |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
14 |
13
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
15 |
|
f1oeq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑥 –1-1-onto→ 𝑦 ↔ 𝑓 : 𝐴 –1-1-onto→ 𝑦 ) ) |
16 |
15
|
exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑦 ) ) |
17 |
|
f1oeq3 |
⊢ ( 𝑦 = 𝐵 → ( 𝑓 : 𝐴 –1-1-onto→ 𝑦 ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) |
18 |
17
|
exbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑦 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) |
19 |
|
df-en |
⊢ ≈ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 } |
20 |
16 18 19
|
brabg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) |
21 |
1 14 20
|
pm5.21nii |
⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |