Metamath Proof Explorer
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 19-Dec-2013)
|
|
Ref |
Expression |
|
Hypotheses |
opelopabg.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
opelopabg.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
brabg.5 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |
|
Assertion |
brabg |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 𝑅 𝐵 ↔ 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
opelopabg.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
opelopabg.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
brabg.5 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |
4 |
1 2
|
sylan9bb |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜒 ) ) |
5 |
4 3
|
brabga |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 𝑅 𝐵 ↔ 𝜒 ) ) |