Metamath Proof Explorer


Theorem brabg

Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
opelopabg.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
brabg.5 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
Assertion brabg ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 𝑅 𝐵𝜒 ) )

Proof

Step Hyp Ref Expression
1 opelopabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 opelopabg.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 brabg.5 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
4 1 2 sylan9bb ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜒 ) )
5 4 3 brabga ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 𝑅 𝐵𝜒 ) )