Metamath Proof Explorer


Theorem brabg

Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopabg.1
|- ( x = A -> ( ph <-> ps ) )
opelopabg.2
|- ( y = B -> ( ps <-> ch ) )
brabg.5
|- R = { <. x , y >. | ph }
Assertion brabg
|- ( ( A e. C /\ B e. D ) -> ( A R B <-> ch ) )

Proof

Step Hyp Ref Expression
1 opelopabg.1
 |-  ( x = A -> ( ph <-> ps ) )
2 opelopabg.2
 |-  ( y = B -> ( ps <-> ch ) )
3 brabg.5
 |-  R = { <. x , y >. | ph }
4 1 2 sylan9bb
 |-  ( ( x = A /\ y = B ) -> ( ph <-> ch ) )
5 4 3 brabga
 |-  ( ( A e. C /\ B e. D ) -> ( A R B <-> ch ) )