Step |
Hyp |
Ref |
Expression |
1 |
|
encv |
|- ( A ~~ B -> ( A e. _V /\ B e. _V ) ) |
2 |
|
f1ofn |
|- ( f : A -1-1-onto-> B -> f Fn A ) |
3 |
|
fndm |
|- ( f Fn A -> dom f = A ) |
4 |
|
vex |
|- f e. _V |
5 |
4
|
dmex |
|- dom f e. _V |
6 |
3 5
|
eqeltrrdi |
|- ( f Fn A -> A e. _V ) |
7 |
2 6
|
syl |
|- ( f : A -1-1-onto-> B -> A e. _V ) |
8 |
|
f1ofo |
|- ( f : A -1-1-onto-> B -> f : A -onto-> B ) |
9 |
|
forn |
|- ( f : A -onto-> B -> ran f = B ) |
10 |
8 9
|
syl |
|- ( f : A -1-1-onto-> B -> ran f = B ) |
11 |
4
|
rnex |
|- ran f e. _V |
12 |
10 11
|
eqeltrrdi |
|- ( f : A -1-1-onto-> B -> B e. _V ) |
13 |
7 12
|
jca |
|- ( f : A -1-1-onto-> B -> ( A e. _V /\ B e. _V ) ) |
14 |
13
|
exlimiv |
|- ( E. f f : A -1-1-onto-> B -> ( A e. _V /\ B e. _V ) ) |
15 |
|
f1oeq2 |
|- ( x = A -> ( f : x -1-1-onto-> y <-> f : A -1-1-onto-> y ) ) |
16 |
15
|
exbidv |
|- ( x = A -> ( E. f f : x -1-1-onto-> y <-> E. f f : A -1-1-onto-> y ) ) |
17 |
|
f1oeq3 |
|- ( y = B -> ( f : A -1-1-onto-> y <-> f : A -1-1-onto-> B ) ) |
18 |
17
|
exbidv |
|- ( y = B -> ( E. f f : A -1-1-onto-> y <-> E. f f : A -1-1-onto-> B ) ) |
19 |
|
df-en |
|- ~~ = { <. x , y >. | E. f f : x -1-1-onto-> y } |
20 |
16 18 19
|
brabg |
|- ( ( A e. _V /\ B e. _V ) -> ( A ~~ B <-> E. f f : A -1-1-onto-> B ) ) |
21 |
1 14 20
|
pm5.21nii |
|- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |