Description: Define the equinumerosity relation. Definition of Enderton p. 129. We define ~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren . (Contributed by NM, 28-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-en | |- ~~ = { <. x , y >. | E. f f : x -1-1-onto-> y } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cen | |- ~~ |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | vf | |- f |
|
| 4 | 3 | cv | |- f |
| 5 | 1 | cv | |- x |
| 6 | 2 | cv | |- y |
| 7 | 5 6 4 | wf1o | |- f : x -1-1-onto-> y |
| 8 | 7 3 | wex | |- E. f f : x -1-1-onto-> y |
| 9 | 8 1 2 | copab | |- { <. x , y >. | E. f f : x -1-1-onto-> y } |
| 10 | 0 9 | wceq | |- ~~ = { <. x , y >. | E. f f : x -1-1-onto-> y } |