Metamath Proof Explorer


Theorem sneq

Description: Equality theorem for singletons. Part of Exercise 4 of TakeutiZaring p. 15. (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion sneq ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } )

Proof

Step Hyp Ref Expression
1 eqeq2 ( 𝐴 = 𝐵 → ( 𝑥 = 𝐴𝑥 = 𝐵 ) )
2 1 abbidv ( 𝐴 = 𝐵 → { 𝑥𝑥 = 𝐴 } = { 𝑥𝑥 = 𝐵 } )
3 df-sn { 𝐴 } = { 𝑥𝑥 = 𝐴 }
4 df-sn { 𝐵 } = { 𝑥𝑥 = 𝐵 }
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } )