Metamath Proof Explorer


Theorem rexdif1enOLD

Description: Obsolete version of rexdif1en as of 5-Jan-2025. (Contributed by BTernaryTau, 26-Aug-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rexdif1enOLD MωAsucMxAAxM

Proof

Step Hyp Ref Expression
1 bren AsucMff:A1-1 ontosucM
2 19.42v fMωf:A1-1 ontosucMMωff:A1-1 ontosucM
3 sucidg MωMsucM
4 f1ocnvdm f:A1-1 ontosucMMsucMf-1MA
5 4 ancoms MsucMf:A1-1 ontosucMf-1MA
6 3 5 sylan Mωf:A1-1 ontosucMf-1MA
7 vex fV
8 dif1enlemOLD fVMωf:A1-1 ontosucMAf-1MM
9 7 8 mp3an1 Mωf:A1-1 ontosucMAf-1MM
10 sneq x=f-1Mx=f-1M
11 10 difeq2d x=f-1MAx=Af-1M
12 11 breq1d x=f-1MAxMAf-1MM
13 12 rspcev f-1MAAf-1MMxAAxM
14 6 9 13 syl2anc Mωf:A1-1 ontosucMxAAxM
15 14 exlimiv fMωf:A1-1 ontosucMxAAxM
16 2 15 sylbir Mωff:A1-1 ontosucMxAAxM
17 1 16 sylan2b MωAsucMxAAxM