Metamath Proof Explorer
Table of Contents - 2.4. ZF Set Theory - add the Axiom of Union
- Introduce the Axiom of Union
- ax-un
- zfun
- axun2
- uniex2
- vuniex
- uniexg
- uniex
- uniexd
- unex
- tpex
- unexb
- unexg
- xpexg
- xpexd
- 3xpexg
- xpex
- unexd
- sqxpexg
- abnexg
- abnex
- snnex
- pwnex
- difex2
- difsnexi
- uniuni
- uniexr
- uniexb
- pwexr
- pwexb
- elpwpwel
- eldifpw
- elpwun
- pwuncl
- iunpw
- fr3nr
- epne3
- dfwe2
- Ordinals (continued)
- epweon
- ordon
- onprc
- ssorduni
- ssonuni
- ssonunii
- ordeleqon
- ordsson
- onss
- predon
- ssonprc
- onuni
- orduni
- onint
- onint0
- onssmin
- onminesb
- onminsb
- oninton
- onintrab
- onintrab2
- onnmin
- onnminsb
- oneqmin
- uniordint
- onminex
- sucon
- sucexb
- sucexg
- sucex
- onmindif2
- suceloni
- ordsuc
- ordpwsuc
- onpwsuc
- sucelon
- ordsucss
- onpsssuc
- ordelsuc
- onsucmin
- ordsucelsuc
- ordsucsssuc
- ordsucuniel
- ordsucun
- ordunpr
- ordunel
- onsucuni
- ordsucuni
- orduniorsuc
- unon
- ordunisuc
- orduniss2
- onsucuni2
- 0elsuc
- limon
- onssi
- onsuci
- onuniorsuci
- onuninsuci
- onsucssi
- nlimsucg
- orduninsuc
- ordunisuc2
- ordzsl
- onzsl
- dflim3
- dflim4
- limsuc
- limsssuc
- nlimon
- limuni3
- Transfinite induction
- tfi
- tfis
- tfis2f
- tfis2
- tfis3
- tfisi
- tfinds
- tfindsg
- tfindsg2
- tfindes
- tfinds2
- tfinds3
- The natural numbers (i.e., finite ordinals)
- com
- df-om
- dfom2
- elom
- omsson
- limomss
- nnon
- nnoni
- nnord
- ordom
- elnn
- omon
- omelon2
- nnlim
- omssnlim
- limom
- peano2b
- nnsuc
- omsucne
- ssnlim
- omsinds
- Peano's postulates
- peano1
- peano2
- peano3
- peano4
- peano5
- nn0suc
- Finite induction (for finite ordinals)
- find
- findOLD
- finds
- findsg
- finds2
- finds1
- findes
- Relations and functions (cont.)
- dmexg
- rnexg
- dmexd
- fndmexd
- dmfex
- fndmexb
- fdmexb
- dmfexALT
- dmex
- rnex
- iprc
- resiexg
- imaexg
- imaex
- exse2
- xpexr
- xpexr2
- xpexcnv
- soex
- elxp4
- elxp5
- cnvexg
- cnvex
- relcnvexb
- f1oexrnex
- f1oexbi
- coexg
- coex
- funcnvuni
- fun11uni
- fex2
- fabexg
- fabex
- f1oabexg
- fiunlem
- fiun
- f1iun
- fviunfun
- ffoss
- f11o
- resfunexgALT
- cofunexg
- cofunex2g
- fnexALT
- funexw
- mptexw
- funrnex
- zfrep6
- fornex
- f1dmex
- f1ovv
- fvclex
- fvresex
- abrexexg
- abrexex
- iunexg
- abrexex2g
- opabex3d
- opabex3rd
- opabex3
- iunex
- abrexex2
- abexssex
- abexex
- f1oweALT
- wemoiso
- wemoiso2
- oprabexd
- oprabex
- oprabex3
- oprabrexex2
- ab2rexex
- ab2rexex2
- xpexgALT
- offval3
- offres
- ofmres
- ofmresex
- First and second members of an ordered pair
- c1st
- c2nd
- df-1st
- df-2nd
- 1stval
- 2ndval
- 1stnpr
- 2ndnpr
- 1st0
- 2nd0
- op1st
- op2nd
- op1std
- op2ndd
- op1stg
- op2ndg
- ot1stg
- ot2ndg
- ot3rdg
- 1stval2
- 2ndval2
- oteqimp
- fo1st
- fo2nd
- br1steqg
- br2ndeqg
- f1stres
- f2ndres
- fo1stres
- fo2ndres
- 1st2val
- 2nd2val
- 1stcof
- 2ndcof
- xp1st
- xp2nd
- elxp6
- elxp7
- eqopi
- xp2
- unielxp
- 1st2nd2
- 1st2ndb
- xpopth
- eqop
- eqop2
- op1steq
- opreuopreu
- el2xptp
- el2xptp0
- 2nd1st
- 1st2nd
- 1stdm
- 2ndrn
- 1st2ndbr
- releldm2
- reldm
- releldmdifi
- funfv1st2nd
- funelss
- funeldmdif
- sbcopeq1a
- csbopeq1a
- dfopab2
- dfoprab3s
- dfoprab3
- dfoprab4
- dfoprab4f
- opabex2
- opabn1stprc
- opiota
- cnvoprab
- dfxp3
- elopabi
- eloprabi
- mpomptsx
- mpompts
- dmmpossx
- fmpox
- fmpo
- fnmpo
- fnmpoi
- dmmpo
- ovmpoelrn
- dmmpoga
- dmmpogaOLD
- dmmpog
- mpoexxg
- mpoexg
- mpoexga
- mpoexw
- mpoex
- mptmpoopabbrd
- mptmpoopabovd
- el2mpocsbcl
- el2mpocl
- fnmpoovd
- offval22
- brovpreldm
- bropopvvv
- bropfvvvvlem
- bropfvvvv
- ovmptss
- relmpoopab
- fmpoco
- oprabco
- oprab2co
- df1st2
- df2nd2
- 1stconst
- 2ndconst
- dfmpo
- mposn
- curry1
- curry1val
- curry1f
- curry2
- curry2f
- curry2val
- cnvf1olem
- cnvf1o
- fparlem1
- fparlem2
- fparlem3
- fparlem4
- fpar
- fsplit
- fsplitOLD
- fsplitfpar
- offsplitfpar
- f2ndf
- fo2ndf
- f1o2ndf1
- algrflem
- frxp
- xporderlem
- poxp
- soxp
- wexp
- fnwelem
- fnwe
- fnse
- fvproj
- fimaproj
- The support of functions
- csupp
- df-supp
- suppval
- supp0prc
- suppvalbr
- supp0
- suppval1
- suppvalfng
- suppvalfn
- elsuppfng
- elsuppfn
- cnvimadfsn
- suppimacnvss
- suppimacnv
- frnsuppeq
- frnsuppeqg
- suppssdm
- suppsnop
- snopsuppss
- fvn0elsupp
- fvn0elsuppb
- rexsupp
- ressuppss
- suppun
- ressuppssdif
- mptsuppdifd
- mptsuppd
- extmptsuppeq
- suppfnss
- funsssuppss
- fnsuppres
- fnsuppeq0
- fczsupp0
- suppss
- suppssOLD
- suppssr
- suppssrg
- suppssov1
- suppssof1
- suppss2
- suppsssn
- suppssfv
- suppofssd
- suppofss1d
- suppofss2d
- suppco
- suppcoss
- supp0cosupp0
- imacosupp
- Special maps-to operations
- opeliunxp2f
- mpoxeldm
- mpoxneldm
- mpoxopn0yelv
- mpoxopynvov0g
- mpoxopxnop0
- mpoxopx0ov0
- mpoxopxprcov0
- mpoxopynvov0
- mpoxopoveq
- mpoxopovel
- mpoxopoveqd
- brovex
- brovmpoex
- sprmpod
- Function transposition
- ctpos
- df-tpos
- tposss
- tposeq
- tposeqd
- tposssxp
- reltpos
- brtpos2
- brtpos0
- reldmtpos
- brtpos
- ottpos
- relbrtpos
- dmtpos
- rntpos
- tposexg
- ovtpos
- tposfun
- dftpos2
- dftpos3
- dftpos4
- tpostpos
- tpostpos2
- tposfn2
- tposfo2
- tposf2
- tposf12
- tposf1o2
- tposfo
- tposf
- tposfn
- tpos0
- tposco
- tpossym
- tposeqi
- tposex
- nftpos
- tposoprab
- tposmpo
- tposconst
- Curry and uncurry
- ccur
- cunc
- df-cur
- df-unc
- mpocurryd
- mpocurryvald
- fvmpocurryd
- Undefined values
- cund
- df-undef
- pwuninel2
- pwuninel
- undefval
- undefnel2
- undefnel
- undefne0
- Well-founded recursion
- cwrecs
- df-wrecs
- wrecseq123
- nfwrecs
- wrecseq1
- wrecseq2
- wrecseq3
- wfr3g
- wfrlem1
- wfrlem2
- wfrlem3
- wfrlem3a
- wfrlem4
- wfrlem5
- wfrrel
- wfrdmss
- wfrlem8
- wfrdmcl
- wfrlem10
- wfrfun
- wfrlem12
- wfrlem13
- wfrlem14
- wfrlem15
- wfrlem16
- wfrlem17
- wfr2a
- wfr1
- wfr2
- wfr3
- Functions on ordinals; strictly monotone ordinal functions
- iunon
- iinon
- onfununi
- onovuni
- onoviun
- onnseq
- wsmo
- df-smo
- dfsmo2
- issmo
- issmo2
- smoeq
- smodm
- smores
- smores3
- smores2
- smodm2
- smofvon2
- iordsmo
- smo0
- smofvon
- smoel
- smoiun
- smoiso
- smoel2
- smo11
- smoord
- smoword
- smogt
- smorndom
- smoiso2
- "Strong" transfinite recursion
- crecs
- df-recs
- dfrecs3
- recseq
- nfrecs
- tfrlem1
- tfrlem3a
- tfrlem3
- tfrlem4
- tfrlem5
- recsfval
- tfrlem6
- tfrlem7
- tfrlem8
- tfrlem9
- tfrlem9a
- tfrlem10
- tfrlem11
- tfrlem12
- tfrlem13
- tfrlem14
- tfrlem15
- tfrlem16
- tfr1a
- tfr2a
- tfr2b
- tfr1
- tfr2
- tfr3
- tfr1ALT
- tfr2ALT
- tfr3ALT
- recsfnon
- recsval
- tz7.44lem1
- tz7.44-1
- tz7.44-2
- tz7.44-3
- Recursive definition generator
- crdg
- df-rdg
- rdgeq1
- rdgeq2
- rdgeq12
- nfrdg
- rdglem1
- rdgfun
- rdgdmlim
- rdgfnon
- rdgvalg
- rdgval
- rdg0
- rdgseg
- rdgsucg
- rdgsuc
- rdglimg
- rdglim
- rdg0g
- rdgsucmptf
- rdgsucmptnf
- rdgsucmpt2
- rdgsucmpt
- rdglim2
- rdglim2a
- Finite recursion
- frfnom
- fr0g
- frsuc
- frsucmpt
- frsucmptn
- frsucmpt2w
- frsucmpt2
- tz7.48lem
- tz7.48-2
- tz7.48-1
- tz7.48-3
- tz7.49
- tz7.49c
- cseqom
- df-seqom
- seqomlem0
- seqomlem1
- seqomlem2
- seqomlem3
- seqomlem4
- seqomeq12
- fnseqom
- seqom0g
- seqomsuc
- omsucelsucb
- Ordinal arithmetic
- c1o
- c2o
- c3o
- c4o
- coa
- comu
- coe
- df-1o
- df-2o
- df-3o
- df-4o
- df-oadd
- df-omul
- df-oexp
- 1on
- 2on
- 2on0
- 3on
- 4on
- df1o2
- 1oex
- 1oexOLD
- df2o3
- df2o2
- 2oex
- 2oexOLD
- 1n0
- xp01disj
- xp01disjl
- ordgt0ge1
- ordge1n0
- el1o
- dif1o
- ondif1
- ondif2
- 2oconcl
- 0lt1o
- dif20el
- 0we1
- brwitnlem
- fnoa
- fnom
- fnoe
- oav
- omv
- oe0lem
- oev
- oevn0
- oa0
- om0
- oe0m
- om0x
- oe0m0
- oe0m1
- oe0
- oev2
- oasuc
- oesuclem
- omsuc
- oesuc
- onasuc
- onmsuc
- onesuc
- oa1suc
- oalim
- omlim
- oelim
- oacl
- omcl
- oecl
- oa0r
- om0r
- o1p1e2
- o2p2e4
- o2p2e4OLD
- om1
- om1r
- oe1
- oe1m
- oaordi
- oaord
- oacan
- oaword
- oawordri
- oaord1
- oaword1
- oaword2
- oawordeulem
- oawordeu
- oawordexr
- oawordex
- oaordex
- oa00
- oalimcl
- oaass
- oarec
- oaf1o
- oacomf1olem
- oacomf1o
- omordi
- omord2
- omord
- omcan
- omword
- omwordi
- omwordri
- omword1
- omword2
- om00
- om00el
- omordlim
- omlimcl
- odi
- omass
- oneo
- omeulem1
- omeulem2
- omopth2
- omeu
- oen0
- oeordi
- oeord
- oecan
- oeword
- oewordi
- oewordri
- oeworde
- oeordsuc
- oelim2
- oeoalem
- oeoa
- oeoelem
- oeoe
- oelimcl
- oeeulem
- oeeui
- oeeu
- Natural number arithmetic
- nna0
- nnm0
- nnasuc
- nnmsuc
- nnesuc
- nna0r
- nnm0r
- nnacl
- nnmcl
- nnecl
- nnacli
- nnmcli
- nnarcl
- nnacom
- nnaordi
- nnaord
- nnaordr
- nnawordi
- nnaass
- nndi
- nnmass
- nnmsucr
- nnmcom
- nnaword
- nnacan
- nnaword1
- nnaword2
- nnmordi
- nnmord
- nnmword
- nnmcan
- nnmwordi
- nnmwordri
- nnawordex
- nnaordex
- 1onn
- 2onn
- 3onn
- 4onn
- 1one2o
- oaabslem
- oaabs
- oaabs2
- omabslem
- omabs
- nnm1
- nnm2
- nn2m
- nnneo
- nneob
- omsmolem
- omsmo
- omopthlem1
- omopthlem2
- omopthi
- omopth
- Equivalence relations and classes
- wer
- cec
- cqs
- df-er
- dfer2
- df-ec
- dfec2
- ecexg
- ecexr
- df-qs
- ereq1
- ereq2
- errel
- erdm
- ercl
- ersym
- ercl2
- ersymb
- ertr
- ertrd
- ertr2d
- ertr3d
- ertr4d
- erref
- ercnv
- errn
- erssxp
- erex
- erexb
- iserd
- iseri
- iseriALT
- brdifun
- swoer
- swoord1
- swoord2
- swoso
- eqerlem
- eqer
- ider
- 0er
- eceq1
- eceq1d
- eceq2
- eceq2i
- eceq2d
- elecg
- elec
- relelec
- ecss
- ecdmn0
- ereldm
- erth
- erth2
- erthi
- erdisj
- ecidsn
- qseq1
- qseq2
- qseq2i
- qseq2d
- qseq12
- elqsg
- elqs
- elqsi
- elqsecl
- ecelqsg
- ecelqsi
- ecopqsi
- qsexg
- qsex
- uniqs
- qsss
- uniqs2
- snec
- ecqs
- ecid
- qsid
- ectocld
- ectocl
- elqsn0
- ecelqsdm
- xpider
- iiner
- riiner
- erinxp
- ecinxp
- qsinxp
- qsdisj
- qsdisj2
- qsel
- uniinqs
- qliftlem
- qliftrel
- qliftel
- qliftel1
- qliftfun
- qliftfund
- qliftfuns
- qliftf
- qliftval
- ecoptocl
- 2ecoptocl
- 3ecoptocl
- brecop
- brecop2
- eroveu
- erovlem
- erov
- eroprf
- erov2
- eroprf2
- ecopoveq
- ecopovsym
- ecopovtrn
- ecopover
- eceqoveq
- ecovcom
- ecovass
- ecovdi
- The mapping operation
- cmap
- cpm
- df-map
- df-pm
- mapprc
- pmex
- mapex
- fnmap
- fnpm
- reldmmap
- mapvalg
- pmvalg
- mapval
- elmapg
- elmapd
- mapdm0
- elpmg
- elpm2g
- elpm2r
- elpmi
- pmfun
- elmapex
- elmapi
- mapfset
- mapssfset
- mapfoss
- fsetsspwxp
- fset0
- fsetdmprc0
- fsetex
- f1setex
- fosetex
- f1osetex
- fsetfcdm
- fsetfocdm
- fsetprcnex
- fsetcdmex
- fsetexb
- elmapfn
- elmapfun
- elmapssres
- fpmg
- pmss12g
- pmresg
- elmap
- mapval2
- elpm
- elpm2
- fpm
- mapsspm
- pmsspw
- mapsspw
- mapfvd
- elmapresaun
- fvmptmap
- map0e
- map0b
- map0g
- 0map0sn0
- mapsnd
- map0
- mapsn
- mapss
- fdiagfn
- fvdiagfn
- mapsnconst
- mapsncnv
- mapsnf1o2
- mapsnf1o3
- ralxpmap
- Infinite Cartesian products
- cixp
- df-ixp
- dfixp
- ixpsnval
- elixp2
- fvixp
- ixpfn
- elixp
- elixpconst
- ixpconstg
- ixpconst
- ixpeq1
- ixpeq1d
- ss2ixp
- ixpeq2
- ixpeq2dva
- ixpeq2dv
- cbvixp
- cbvixpv
- nfixpw
- nfixp
- nfixp1
- ixpprc
- ixpf
- uniixp
- ixpexg
- ixpin
- ixpiin
- ixpint
- ixp0x
- ixpssmap2g
- ixpssmapg
- 0elixp
- ixpn0
- ixp0
- ixpssmap
- resixp
- undifixp
- mptelixpg
- resixpfo
- elixpsn
- ixpsnf1o
- mapsnf1o
- boxriin
- boxcutc
- Equinumerosity
- cen
- cdom
- csdm
- cfn
- df-en
- df-dom
- df-sdom
- df-fin
- relen
- reldom
- relsdom
- encv
- bren
- brdomg
- brdomi
- brdom
- domen
- domeng
- ctex
- f1oen3g
- f1oen2g
- f1dom2g
- f1oeng
- f1domg
- f1oen
- f1dom
- brsdom
- isfi
- enssdom
- dfdom2
- endom
- sdomdom
- sdomnen
- brdom2
- bren2
- enrefg
- enref
- eqeng
- domrefg
- en2d
- en3d
- en2i
- en3i
- dom2lem
- dom2d
- dom3d
- dom2
- dom3
- idssen
- ssdomg
- ener
- ensymb
- ensym
- ensymi
- ensymd
- entr
- domtr
- entri
- entr2i
- entr3i
- entr4i
- endomtr
- domentr
- f1imaeng
- f1imaen2g
- f1imaen
- en0
- en0OLD
- ensn1
- ensn1g
- enpr1g
- en1
- en1b
- reuen1
- euen1
- euen1b
- en1uniel
- 2dom
- fundmen
- fundmeng
- cnven
- cnvct
- fndmeng
- mapsnend
- mapsnen
- snmapen
- snmapen1
- map1
- en2sn
- en2snOLD
- snfi
- fiprc
- unen
- enrefnn
- enpr2d
- ssct
- difsnen
- domdifsn
- xpsnen
- xpsneng
- xp1en
- endisj
- undom
- xpcomf1o
- xpcomco
- xpcomen
- xpcomeng
- xpsnen2g
- xpassen
- xpdom2
- xpdom2g
- xpdom1g
- xpdom3
- xpdom1
- domunsncan
- omxpenlem
- omxpen
- omf1o
- pw2f1olem
- pw2f1o
- pw2eng
- pw2en
- fopwdom
- enfixsn
- sucdom2
- Schroeder-Bernstein Theorem
- sbthlem1
- sbthlem2
- sbthlem3
- sbthlem4
- sbthlem5
- sbthlem6
- sbthlem7
- sbthlem8
- sbthlem9
- sbthlem10
- sbth
- sbthb
- sbthcl
- dfsdom2
- brsdom2
- sdomnsym
- domnsym
- 0domg
- dom0
- 0sdomg
- 0dom
- 0sdom
- sdom0
- sdomdomtr
- sdomentr
- domsdomtr
- ensdomtr
- sdomirr
- sdomtr
- sdomn2lp
- enen1
- enen2
- domen1
- domen2
- sdomen1
- sdomen2
- domtriord
- sdomel
- sdomdif
- onsdominel
- domunsn
- fodomr
- pwdom
- canth2
- canth2g
- 2pwuninel
- 2pwne
- disjen
- disjenex
- domss2
- domssex2
- domssex
- Equinumerosity (cont.)
- xpf1o
- xpen
- mapen
- mapdom1
- mapxpen
- xpmapenlem
- xpmapen
- mapunen
- map2xp
- mapdom2
- mapdom3
- pwen
- ssenen
- limenpsi
- limensuci
- limensuc
- infensuc
- Pigeonhole Principle
- phplem1
- phplem2
- phplem3
- phplem4
- nneneq
- php
- php2
- php3
- php4
- php5
- phpeqd
- snnen2o
- nndomog
- Finite sets
- dif1enlem
- rexdif1en
- dif1en
- findcard
- findcard2
- findcard2s
- findcard2d
- nnfi
- pssnn
- ssnnfi
- ssnnfiOLD
- 0fin
- unfi
- ssfi
- imafi
- pwfir
- pwfilem
- pwfi
- cnvfi
- fnfi
- f1oenfi
- f1oenfirn
- enreffi
- ensymfib
- entrfil
- enfii
- enfi
- entrfi
- entrfir
- onomeneq
- onfin
- onfin2
- nnfiOLD
- nndomo
- nnsdomo
- sucdom
- 0sdom1dom
- 1sdom2
- sdom1
- modom
- modom2
- 1sdom
- unxpdomlem1
- unxpdomlem2
- unxpdomlem3
- unxpdom
- unxpdom2
- sucxpdom
- pssinf
- fisseneq
- ominf
- isinf
- fineqvlem
- fineqv
- enfiOLD
- enfiiOLD
- pssnnOLD
- ssfiOLD
- domfi
- xpfir
- ssfid
- infi
- rabfi
- finresfin
- f1finf1o
- nfielex
- en1eqsn
- en1eqsnbi
- diffi
- dif1enOLD
- enp1ilem
- enp1i
- en2
- en3
- en4
- findcard2OLD
- findcard3
- ac6sfi
- frfi
- fimax2g
- fimaxg
- fisupg
- wofi
- ordunifi
- nnunifi
- unblem1
- unblem2
- unblem3
- unblem4
- unbnn
- unbnn2
- isfinite2
- nnsdomg
- isfiniteg
- infsdomnn
- infn0
- fin2inf
- unfilem1
- unfilem2
- unfilem3
- unfiOLD
- unfir
- unfi2
- difinf
- xpfi
- 3xpfi
- domunfican
- infcntss
- prfi
- tpfi
- fiint
- fodomfi
- fodomfib
- fofinf1o
- rneqdmfinf1o
- fidomdm
- dmfi
- fundmfibi
- resfnfinfin
- residfi
- cnvfiALT
- rnfi
- f1dmvrnfibi
- f1vrnfibi
- fofi
- f1fi
- iunfi
- unifi
- unifi2
- infssuni
- unirnffid
- imafiOLD
- pwfilemOLD
- pwfiOLD
- mapfi
- ixpfi
- ixpfi2
- mptfi
- abrexfi
- cnvimamptfin
- elfpw
- unifpw
- f1opwfi
- fissuni
- fipreima
- finsschain
- indexfi
- Finitely supported functions
- cfsupp
- df-fsupp
- relfsupp
- relprcnfsupp
- isfsupp
- funisfsupp
- fsuppimp
- fsuppimpd
- fisuppfi
- fdmfisuppfi
- fdmfifsupp
- fsuppmptdm
- fndmfisuppfi
- fndmfifsupp
- suppeqfsuppbi
- suppssfifsupp
- fsuppsssupp
- fsuppxpfi
- fczfsuppd
- fsuppun
- fsuppunfi
- fsuppunbi
- 0fsupp
- snopfsupp
- funsnfsupp
- fsuppres
- ressuppfi
- resfsupp
- resfifsupp
- frnfsuppbi
- fsuppmptif
- sniffsupp
- fsuppcolem
- fsuppco
- fsuppco2
- fsuppcor
- mapfienlem1
- mapfienlem2
- mapfienlem3
- mapfien
- mapfien2
- Finite intersections
- cfi
- df-fi
- fival
- elfi
- elfi2
- elfir
- intrnfi
- iinfi
- inelfi
- ssfii
- fi0
- fieq0
- fiin
- dffi2
- fiss
- inficl
- fipwuni
- fisn
- fiuni
- fipwss
- elfiun
- dffi3
- fifo
- Hall's marriage theorem
- marypha1lem
- marypha1
- marypha2lem1
- marypha2lem2
- marypha2lem3
- marypha2lem4
- marypha2
- Supremum and infimum
- csup
- cinf
- df-sup
- df-inf
- dfsup2
- supeq1
- supeq1d
- supeq1i
- supeq2
- supeq3
- supeq123d
- nfsup
- supmo
- supexd
- supeu
- supval2
- eqsup
- eqsupd
- supcl
- supub
- suplub
- suplub2
- supnub
- supex
- sup00
- sup0riota
- sup0
- supmax
- fisup2g
- fisupcl
- supgtoreq
- suppr
- supsn
- supisolem
- supisoex
- supiso
- infeq1
- infeq1d
- infeq1i
- infeq2
- infeq3
- infeq123d
- nfinf
- infexd
- eqinf
- eqinfd
- infval
- infcllem
- infcl
- inflb
- infglb
- infglbb
- infnlb
- infex
- infmin
- infmo
- infeu
- fimin2g
- fiming
- fiinfg
- fiinf2g
- fiinfcl
- infltoreq
- infpr
- infsupprpr
- infsn
- inf00
- infempty
- infiso
- Ordinal isomorphism, Hartogs's theorem
- coi
- df-oi
- dfoi
- oieq1
- oieq2
- nfoi
- ordiso2
- ordiso
- ordtypecbv
- ordtypelem1
- ordtypelem2
- ordtypelem3
- ordtypelem4
- ordtypelem5
- ordtypelem6
- ordtypelem7
- ordtypelem8
- ordtypelem9
- ordtypelem10
- oi0
- oicl
- oif
- oiiso2
- ordtype
- oiiniseg
- ordtype2
- oiexg
- oion
- oiiso
- oien
- oieu
- oismo
- oiid
- hartogslem1
- hartogslem2
- hartogs
- wofib
- wemaplem1
- wemaplem2
- wemaplem3
- wemappo
- wemapsolem
- wemapso
- wemapso2lem
- wemapso2
- card2on
- card2inf
- Hartogs function
- char
- df-har
- harf
- harcl
- harval
- elharval
- harndom
- harword
- Weak dominance
- cwdom
- df-wdom
- relwdom
- brwdom
- brwdomi
- brwdomn0
- 0wdom
- fowdom
- wdomref
- brwdom2
- domwdom
- wdomtr
- wdomen1
- wdomen2
- wdompwdom
- canthwdom
- wdom2d
- wdomd
- brwdom3
- brwdom3i
- unwdomg
- xpwdomg
- wdomima2g
- wdomimag
- unxpwdom2
- unxpwdom
- ixpiunwdom
- harwdom