Description: Images of finite sets are finite. For a shorter proof using ax-pow , see imafiALT . (Contributed by Stefan O'Rear, 22-Feb-2015) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | imafi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq2 | |
|
2 | 1 | eleq1d | |
3 | 2 | imbi2d | |
4 | imaeq2 | |
|
5 | 4 | eleq1d | |
6 | 5 | imbi2d | |
7 | imaeq2 | |
|
8 | 7 | eleq1d | |
9 | 8 | imbi2d | |
10 | imaeq2 | |
|
11 | 10 | eleq1d | |
12 | 11 | imbi2d | |
13 | ima0 | |
|
14 | 0fin | |
|
15 | 13 14 | eqeltri | |
16 | 15 | a1i | |
17 | funfn | |
|
18 | fnsnfv | |
|
19 | 17 18 | sylanb | |
20 | snfi | |
|
21 | 19 20 | eqeltrrdi | |
22 | ndmima | |
|
23 | 22 14 | eqeltrdi | |
24 | 23 | adantl | |
25 | 21 24 | pm2.61dan | |
26 | imaundi | |
|
27 | unfi | |
|
28 | 26 27 | eqeltrid | |
29 | 25 28 | sylan2 | |
30 | 29 | expcom | |
31 | 30 | a2i | |
32 | 31 | a1i | |
33 | 3 6 9 12 16 32 | findcard2 | |
34 | 33 | impcom | |