Metamath Proof Explorer


Theorem ima0

Description: Image of the empty set. Theorem 3.16(ii) of Monk1 p. 38. (Contributed by NM, 20-May-1998)

Ref Expression
Assertion ima0 A=

Proof

Step Hyp Ref Expression
1 df-ima A=ranA
2 res0 A=
3 2 rneqi ranA=ran
4 rn0 ran=
5 1 3 4 3eqtri A=