Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
snfi
Next ⟩
fiprc
Metamath Proof Explorer
Ascii
Unicode
Theorem
snfi
Description:
A singleton is finite.
(Contributed by
NM
, 4-Nov-2002)
Ref
Expression
Assertion
snfi
⊢
A
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
1onn
⊢
1
𝑜
∈
ω
2
ensn1g
⊢
A
∈
V
→
A
≈
1
𝑜
3
breq2
⊢
x
=
1
𝑜
→
A
≈
x
↔
A
≈
1
𝑜
4
3
rspcev
⊢
1
𝑜
∈
ω
∧
A
≈
1
𝑜
→
∃
x
∈
ω
A
≈
x
5
1
2
4
sylancr
⊢
A
∈
V
→
∃
x
∈
ω
A
≈
x
6
snprc
⊢
¬
A
∈
V
↔
A
=
∅
7
en0
⊢
A
≈
∅
↔
A
=
∅
8
peano1
⊢
∅
∈
ω
9
breq2
⊢
x
=
∅
→
A
≈
x
↔
A
≈
∅
10
9
rspcev
⊢
∅
∈
ω
∧
A
≈
∅
→
∃
x
∈
ω
A
≈
x
11
8
10
mpan
⊢
A
≈
∅
→
∃
x
∈
ω
A
≈
x
12
7
11
sylbir
⊢
A
=
∅
→
∃
x
∈
ω
A
≈
x
13
6
12
sylbi
⊢
¬
A
∈
V
→
∃
x
∈
ω
A
≈
x
14
5
13
pm2.61i
⊢
∃
x
∈
ω
A
≈
x
15
isfi
⊢
A
∈
Fin
↔
∃
x
∈
ω
A
≈
x
16
14
15
mpbir
⊢
A
∈
Fin