Metamath Proof Explorer


Theorem snfi

Description: A singleton is finite. (Contributed by NM, 4-Nov-2002)

Ref Expression
Assertion snfi A Fin

Proof

Step Hyp Ref Expression
1 1onn 1 𝑜 ω
2 ensn1g A V A 1 𝑜
3 breq2 x = 1 𝑜 A x A 1 𝑜
4 3 rspcev 1 𝑜 ω A 1 𝑜 x ω A x
5 1 2 4 sylancr A V x ω A x
6 snprc ¬ A V A =
7 en0 A A =
8 peano1 ω
9 breq2 x = A x A
10 9 rspcev ω A x ω A x
11 8 10 mpan A x ω A x
12 7 11 sylbir A = x ω A x
13 6 12 sylbi ¬ A V x ω A x
14 5 13 pm2.61i x ω A x
15 isfi A Fin x ω A x
16 14 15 mpbir A Fin