Step |
Hyp |
Ref |
Expression |
1 |
|
1onn |
⊢ 1o ∈ ω |
2 |
|
ensn1g |
⊢ ( 𝐴 ∈ V → { 𝐴 } ≈ 1o ) |
3 |
|
breq2 |
⊢ ( 𝑥 = 1o → ( { 𝐴 } ≈ 𝑥 ↔ { 𝐴 } ≈ 1o ) ) |
4 |
3
|
rspcev |
⊢ ( ( 1o ∈ ω ∧ { 𝐴 } ≈ 1o ) → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
5 |
1 2 4
|
sylancr |
⊢ ( 𝐴 ∈ V → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
6 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
7 |
|
en0 |
⊢ ( { 𝐴 } ≈ ∅ ↔ { 𝐴 } = ∅ ) |
8 |
|
peano1 |
⊢ ∅ ∈ ω |
9 |
|
breq2 |
⊢ ( 𝑥 = ∅ → ( { 𝐴 } ≈ 𝑥 ↔ { 𝐴 } ≈ ∅ ) ) |
10 |
9
|
rspcev |
⊢ ( ( ∅ ∈ ω ∧ { 𝐴 } ≈ ∅ ) → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
11 |
8 10
|
mpan |
⊢ ( { 𝐴 } ≈ ∅ → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
12 |
7 11
|
sylbir |
⊢ ( { 𝐴 } = ∅ → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
13 |
6 12
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
14 |
5 13
|
pm2.61i |
⊢ ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 |
15 |
|
isfi |
⊢ ( { 𝐴 } ∈ Fin ↔ ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
16 |
14 15
|
mpbir |
⊢ { 𝐴 } ∈ Fin |