Metamath Proof Explorer


Theorem snfi

Description: A singleton is finite. (Contributed by NM, 4-Nov-2002)

Ref Expression
Assertion snfi { 𝐴 } ∈ Fin

Proof

Step Hyp Ref Expression
1 1onn 1o ∈ ω
2 ensn1g ( 𝐴 ∈ V → { 𝐴 } ≈ 1o )
3 breq2 ( 𝑥 = 1o → ( { 𝐴 } ≈ 𝑥 ↔ { 𝐴 } ≈ 1o ) )
4 3 rspcev ( ( 1o ∈ ω ∧ { 𝐴 } ≈ 1o ) → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 )
5 1 2 4 sylancr ( 𝐴 ∈ V → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 )
6 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
7 en0 ( { 𝐴 } ≈ ∅ ↔ { 𝐴 } = ∅ )
8 peano1 ∅ ∈ ω
9 breq2 ( 𝑥 = ∅ → ( { 𝐴 } ≈ 𝑥 ↔ { 𝐴 } ≈ ∅ ) )
10 9 rspcev ( ( ∅ ∈ ω ∧ { 𝐴 } ≈ ∅ ) → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 )
11 8 10 mpan ( { 𝐴 } ≈ ∅ → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 )
12 7 11 sylbir ( { 𝐴 } = ∅ → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 )
13 6 12 sylbi ( ¬ 𝐴 ∈ V → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 )
14 5 13 pm2.61i 𝑥 ∈ ω { 𝐴 } ≈ 𝑥
15 isfi ( { 𝐴 } ∈ Fin ↔ ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 )
16 14 15 mpbir { 𝐴 } ∈ Fin