Metamath Proof Explorer
Table of Contents - 2.5. ZF Set Theory - add the Axiom of Regularity
- Introduce the Axiom of Regularity
- ax-reg
- axreg2
- zfregcl
- zfreg
- elirrv
- elirr
- elneq
- nelaneq
- epinid0
- sucprcreg
- ruv
- ruALT
- zfregfr
- en2lp
- elnanel
- cnvepnep
- epnsym
- elnotel
- elnel
- en3lplem1
- en3lplem2
- en3lp
- preleqg
- preleq
- preleqALT
- opthreg
- suc11reg
- dford2
- Axiom of Infinity equivalents
- inf0
- inf1
- inf2
- inf3lema
- inf3lemb
- inf3lemc
- inf3lemd
- inf3lem1
- inf3lem2
- inf3lem3
- inf3lem4
- inf3lem5
- inf3lem6
- inf3lem7
- inf3
- infeq5i
- infeq5