Metamath Proof Explorer


Theorem fsuppmptif

Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019)

Ref Expression
Hypotheses fsuppmptif.f φF:AB
fsuppmptif.a φAV
fsuppmptif.z φZW
fsuppmptif.s φfinSuppZF
Assertion fsuppmptif φfinSuppZkAifkDFkZ

Proof

Step Hyp Ref Expression
1 fsuppmptif.f φF:AB
2 fsuppmptif.a φAV
3 fsuppmptif.z φZW
4 fsuppmptif.s φfinSuppZF
5 fvex FkV
6 3 adantr φkAZW
7 ifexg FkVZWifkDFkZV
8 5 6 7 sylancr φkAifkDFkZV
9 8 fmpttd φkAifkDFkZ:AV
10 9 ffund φFunkAifkDFkZ
11 4 fsuppimpd φFsuppZFin
12 ssidd φFsuppZFsuppZ
13 1 12 2 3 suppssr φkAsuppZFFk=Z
14 13 ifeq1d φkAsuppZFifkDFkZ=ifkDZZ
15 ifid ifkDZZ=Z
16 14 15 eqtrdi φkAsuppZFifkDFkZ=Z
17 16 2 suppss2 φkAifkDFkZsuppZFsuppZ
18 11 17 ssfid φkAifkDFkZsuppZFin
19 2 mptexd φkAifkDFkZV
20 isfsupp kAifkDFkZVZWfinSuppZkAifkDFkZFunkAifkDFkZkAifkDFkZsuppZFin
21 19 3 20 syl2anc φfinSuppZkAifkDFkZFunkAifkDFkZkAifkDFkZsuppZFin
22 10 18 21 mpbir2and φfinSuppZkAifkDFkZ