Metamath Proof Explorer


Theorem ssfid

Description: A subset of a finite set is finite, deduction version of ssfi . (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses ssfid.1 φAFin
ssfid.2 φBA
Assertion ssfid φBFin

Proof

Step Hyp Ref Expression
1 ssfid.1 φAFin
2 ssfid.2 φBA
3 ssfi AFinBABFin
4 1 2 3 syl2anc φBFin