Metamath Proof Explorer


Definition df-fsupp

Description: Define the property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019)

Ref Expression
Assertion df-fsupp finSupp=rz|FunrrsuppzFin

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfsupp classfinSupp
1 vr setvarr
2 vz setvarz
3 1 cv setvarr
4 3 wfun wffFunr
5 csupp classsupp
6 2 cv setvarz
7 3 6 5 co classsuppzr
8 cfn classFin
9 7 8 wcel wffrsuppzFin
10 4 9 wa wffFunrrsuppzFin
11 10 1 2 copab classrz|FunrrsuppzFin
12 0 11 wceq wfffinSupp=rz|FunrrsuppzFin