Description: Define the property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-fsupp | |- finSupp = { <. r , z >. | ( Fun r /\ ( r supp z ) e. Fin ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfsupp | |- finSupp |
|
1 | vr | |- r |
|
2 | vz | |- z |
|
3 | 1 | cv | |- r |
4 | 3 | wfun | |- Fun r |
5 | csupp | |- supp |
|
6 | 2 | cv | |- z |
7 | 3 6 5 | co | |- ( r supp z ) |
8 | cfn | |- Fin |
|
9 | 7 8 | wcel | |- ( r supp z ) e. Fin |
10 | 4 9 | wa | |- ( Fun r /\ ( r supp z ) e. Fin ) |
11 | 10 1 2 | copab | |- { <. r , z >. | ( Fun r /\ ( r supp z ) e. Fin ) } |
12 | 0 11 | wceq | |- finSupp = { <. r , z >. | ( Fun r /\ ( r supp z ) e. Fin ) } |