Metamath Proof Explorer


Definition df-fsupp

Description: Define the property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019)

Ref Expression
Assertion df-fsupp
|- finSupp = { <. r , z >. | ( Fun r /\ ( r supp z ) e. Fin ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfsupp
 |-  finSupp
1 vr
 |-  r
2 vz
 |-  z
3 1 cv
 |-  r
4 3 wfun
 |-  Fun r
5 csupp
 |-  supp
6 2 cv
 |-  z
7 3 6 5 co
 |-  ( r supp z )
8 cfn
 |-  Fin
9 7 8 wcel
 |-  ( r supp z ) e. Fin
10 4 9 wa
 |-  ( Fun r /\ ( r supp z ) e. Fin )
11 10 1 2 copab
 |-  { <. r , z >. | ( Fun r /\ ( r supp z ) e. Fin ) }
12 0 11 wceq
 |-  finSupp = { <. r , z >. | ( Fun r /\ ( r supp z ) e. Fin ) }