Metamath Proof Explorer


Theorem sniffsupp

Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019)

Ref Expression
Hypotheses sniffsupp.i φIV
sniffsupp.0 φ0˙W
sniffsupp.f F=xIifx=XA0˙
Assertion sniffsupp φfinSupp0˙F

Proof

Step Hyp Ref Expression
1 sniffsupp.i φIV
2 sniffsupp.0 φ0˙W
3 sniffsupp.f F=xIifx=XA0˙
4 snfi XFin
5 eldifsni xIXxX
6 5 adantl φxIXxX
7 6 neneqd φxIX¬x=X
8 7 iffalsed φxIXifx=XA0˙=0˙
9 8 1 suppss2 φxIifx=XA0˙supp0˙X
10 ssfi XFinxIifx=XA0˙supp0˙XxIifx=XA0˙supp0˙Fin
11 4 9 10 sylancr φxIifx=XA0˙supp0˙Fin
12 funmpt FunxIifx=XA0˙
13 1 mptexd φxIifx=XA0˙V
14 funisfsupp FunxIifx=XA0˙xIifx=XA0˙V0˙WfinSupp0˙xIifx=XA0˙xIifx=XA0˙supp0˙Fin
15 12 13 2 14 mp3an2i φfinSupp0˙xIifx=XA0˙xIifx=XA0˙supp0˙Fin
16 11 15 mpbird φfinSupp0˙xIifx=XA0˙
17 3 16 eqbrtrid φfinSupp0˙F