Metamath Proof Explorer


Theorem eqbrtrid

Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999)

Ref Expression
Hypotheses eqbrtrid.1 A=B
eqbrtrid.2 φBRC
Assertion eqbrtrid φARC

Proof

Step Hyp Ref Expression
1 eqbrtrid.1 A=B
2 eqbrtrid.2 φBRC
3 eqid C=C
4 2 1 3 3brtr4g φARC