Metamath Proof Explorer


Theorem eqbrtrid

Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999)

Ref Expression
Hypotheses eqbrtrid.1 A = B
eqbrtrid.2 φ B R C
Assertion eqbrtrid φ A R C

Proof

Step Hyp Ref Expression
1 eqbrtrid.1 A = B
2 eqbrtrid.2 φ B R C
3 eqid C = C
4 2 1 3 3brtr4g φ A R C