Step |
Hyp |
Ref |
Expression |
1 |
|
sniffsupp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
2 |
|
sniffsupp.0 |
⊢ ( 𝜑 → 0 ∈ 𝑊 ) |
3 |
|
sniffsupp.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) |
4 |
|
snfi |
⊢ { 𝑋 } ∈ Fin |
5 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) → 𝑥 ≠ 𝑋 ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → 𝑥 ≠ 𝑋 ) |
7 |
6
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → ¬ 𝑥 = 𝑋 ) |
8 |
7
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → if ( 𝑥 = 𝑋 , 𝐴 , 0 ) = 0 ) |
9 |
8 1
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) |
10 |
|
ssfi |
⊢ ( ( { 𝑋 } ∈ Fin ∧ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin ) |
11 |
4 9 10
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin ) |
12 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) |
13 |
1
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∈ V ) |
14 |
|
funisfsupp |
⊢ ( ( Fun ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∧ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∈ V ∧ 0 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) finSupp 0 ↔ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin ) ) |
15 |
12 13 2 14
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) finSupp 0 ↔ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin ) ) |
16 |
11 15
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) finSupp 0 ) |
17 |
3 16
|
eqbrtrid |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |