Metamath Proof Explorer


Theorem sniffsupp

Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019)

Ref Expression
Hypotheses sniffsupp.i ( 𝜑𝐼𝑉 )
sniffsupp.0 ( 𝜑0𝑊 )
sniffsupp.f 𝐹 = ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) )
Assertion sniffsupp ( 𝜑𝐹 finSupp 0 )

Proof

Step Hyp Ref Expression
1 sniffsupp.i ( 𝜑𝐼𝑉 )
2 sniffsupp.0 ( 𝜑0𝑊 )
3 sniffsupp.f 𝐹 = ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) )
4 snfi { 𝑋 } ∈ Fin
5 eldifsni ( 𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) → 𝑥𝑋 )
6 5 adantl ( ( 𝜑𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → 𝑥𝑋 )
7 6 neneqd ( ( 𝜑𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → ¬ 𝑥 = 𝑋 )
8 7 iffalsed ( ( 𝜑𝑥 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → if ( 𝑥 = 𝑋 , 𝐴 , 0 ) = 0 )
9 8 1 suppss2 ( 𝜑 → ( ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ⊆ { 𝑋 } )
10 ssfi ( ( { 𝑋 } ∈ Fin ∧ ( ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) → ( ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin )
11 4 9 10 sylancr ( 𝜑 → ( ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin )
12 funmpt Fun ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) )
13 1 mptexd ( 𝜑 → ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∈ V )
14 funisfsupp ( ( Fun ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∧ ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∈ V ∧ 0𝑊 ) → ( ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) finSupp 0 ↔ ( ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin ) )
15 12 13 2 14 mp3an2i ( 𝜑 → ( ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) finSupp 0 ↔ ( ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ∈ Fin ) )
16 11 15 mpbird ( 𝜑 → ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) finSupp 0 )
17 3 16 eqbrtrid ( 𝜑𝐹 finSupp 0 )