Metamath Proof Explorer


Theorem eldifsni

Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015)

Ref Expression
Assertion eldifsni ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 } ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eldifsn ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴𝐵𝐴𝐶 ) )
2 1 simprbi ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 } ) → 𝐴𝐶 )