Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | eldifsn | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 } ) ) | |
2 | elsng | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝐶 } ↔ 𝐴 = 𝐶 ) ) | |
3 | 2 | necon3bbid | ⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ { 𝐶 } ↔ 𝐴 ≠ 𝐶 ) ) |
4 | 3 | pm5.32i | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ) |
5 | 1 4 | bitri | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ) |