Metamath Proof Explorer


Theorem eldifsn

Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007)

Ref Expression
Assertion eldifsn ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴𝐵𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 eldif ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 } ) )
2 elsng ( 𝐴𝐵 → ( 𝐴 ∈ { 𝐶 } ↔ 𝐴 = 𝐶 ) )
3 2 necon3bbid ( 𝐴𝐵 → ( ¬ 𝐴 ∈ { 𝐶 } ↔ 𝐴𝐶 ) )
4 3 pm5.32i ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 } ) ↔ ( 𝐴𝐵𝐴𝐶 ) )
5 1 4 bitri ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴𝐵𝐴𝐶 ) )