Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
eldifsn
Next ⟩
ssdifsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
eldifsn
Description:
Membership in a set with an element removed.
(Contributed by
NM
, 10-Oct-2007)
Ref
Expression
Assertion
eldifsn
⊢
A
∈
B
∖
C
↔
A
∈
B
∧
A
≠
C
Proof
Step
Hyp
Ref
Expression
1
eldif
⊢
A
∈
B
∖
C
↔
A
∈
B
∧
¬
A
∈
C
2
elsng
⊢
A
∈
B
→
A
∈
C
↔
A
=
C
3
2
necon3bbid
⊢
A
∈
B
→
¬
A
∈
C
↔
A
≠
C
4
3
pm5.32i
⊢
A
∈
B
∧
¬
A
∈
C
↔
A
∈
B
∧
A
≠
C
5
1
4
bitri
⊢
A
∈
B
∖
C
↔
A
∈
B
∧
A
≠
C