Metamath Proof Explorer


Theorem eldifsn

Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007)

Ref Expression
Assertion eldifsn A B C A B A C

Proof

Step Hyp Ref Expression
1 eldif A B C A B ¬ A C
2 elsng A B A C A = C
3 2 necon3bbid A B ¬ A C A C
4 3 pm5.32i A B ¬ A C A B A C
5 1 4 bitri A B C A B A C