Metamath Proof Explorer


Theorem eldifsn

Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007)

Ref Expression
Assertion eldifsn ABCABAC

Proof

Step Hyp Ref Expression
1 eldif ABCAB¬AC
2 elsng ABACA=C
3 2 necon3bbid AB¬ACAC
4 3 pm5.32i AB¬ACABAC
5 1 4 bitri ABCABAC