Metamath Proof Explorer


Theorem eldif

Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion eldif A B C A B ¬ A C

Proof

Step Hyp Ref Expression
1 elex A B C A V
2 elex A B A V
3 2 adantr A B ¬ A C A V
4 eleq1 x = A x B A B
5 eleq1 x = A x C A C
6 5 notbid x = A ¬ x C ¬ A C
7 4 6 anbi12d x = A x B ¬ x C A B ¬ A C
8 df-dif B C = x | x B ¬ x C
9 7 8 elab2g A V A B C A B ¬ A C
10 1 3 9 pm5.21nii A B C A B ¬ A C