Metamath Proof Explorer


Theorem eldif

Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion eldif A B C A B ¬ A C

Proof

Step Hyp Ref Expression
1 elex A B C A V
2 elex A B A V
3 2 adantr A B ¬ A C A V
4 eleq1 x = y x B y B
5 eleq1 x = y x C y C
6 5 notbid x = y ¬ x C ¬ y C
7 4 6 anbi12d x = y x B ¬ x C y B ¬ y C
8 eleq1 y = A y B A B
9 eleq1 y = A y C A C
10 9 notbid y = A ¬ y C ¬ A C
11 8 10 anbi12d y = A y B ¬ y C A B ¬ A C
12 df-dif B C = x | x B ¬ x C
13 7 11 12 elab2gw A V A B C A B ¬ A C
14 1 3 13 pm5.21nii A B C A B ¬ A C