Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Define basic set operations and relations
eldif
Next ⟩
eldifd
Metamath Proof Explorer
Ascii
Unicode
Theorem
eldif
Description:
Expansion of membership in a class difference.
(Contributed by
NM
, 29-Apr-1994)
Ref
Expression
Assertion
eldif
⊢
A
∈
B
∖
C
↔
A
∈
B
∧
¬
A
∈
C
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
A
∈
B
∖
C
→
A
∈
V
2
elex
⊢
A
∈
B
→
A
∈
V
3
2
adantr
⊢
A
∈
B
∧
¬
A
∈
C
→
A
∈
V
4
eleq1
⊢
x
=
y
→
x
∈
B
↔
y
∈
B
5
eleq1
⊢
x
=
y
→
x
∈
C
↔
y
∈
C
6
5
notbid
⊢
x
=
y
→
¬
x
∈
C
↔
¬
y
∈
C
7
4
6
anbi12d
⊢
x
=
y
→
x
∈
B
∧
¬
x
∈
C
↔
y
∈
B
∧
¬
y
∈
C
8
eleq1
⊢
y
=
A
→
y
∈
B
↔
A
∈
B
9
eleq1
⊢
y
=
A
→
y
∈
C
↔
A
∈
C
10
9
notbid
⊢
y
=
A
→
¬
y
∈
C
↔
¬
A
∈
C
11
8
10
anbi12d
⊢
y
=
A
→
y
∈
B
∧
¬
y
∈
C
↔
A
∈
B
∧
¬
A
∈
C
12
df-dif
⊢
B
∖
C
=
x
|
x
∈
B
∧
¬
x
∈
C
13
7
11
12
elab2gw
⊢
A
∈
V
→
A
∈
B
∖
C
↔
A
∈
B
∧
¬
A
∈
C
14
1
3
13
pm5.21nii
⊢
A
∈
B
∖
C
↔
A
∈
B
∧
¬
A
∈
C