Step |
Hyp |
Ref |
Expression |
1 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐵 ∈ V ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
3 |
|
sseq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
4 |
|
eleq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
5 |
3 4
|
imbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ↔ ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ Fin → ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) ↔ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) ) |
7 |
|
sseq2 |
⊢ ( 𝑥 = ∅ → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ ∅ ) ) |
8 |
7
|
imbi1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) ) ) |
9 |
8
|
albidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) ) ) |
10 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ 𝑦 ) ) |
11 |
10
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ) ) |
12 |
11
|
albidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ) ) |
13 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
14 |
13
|
imbi1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) ) |
15 |
14
|
albidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) ) |
16 |
|
sseq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ 𝐴 ) ) |
17 |
16
|
imbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) ) |
18 |
17
|
albidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) ) |
19 |
|
ss0 |
⊢ ( 𝑏 ⊆ ∅ → 𝑏 = ∅ ) |
20 |
|
0fin |
⊢ ∅ ∈ Fin |
21 |
19 20
|
eqeltrdi |
⊢ ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) |
22 |
21
|
ax-gen |
⊢ ∀ 𝑏 ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) |
23 |
|
sseq1 |
⊢ ( 𝑏 = 𝑐 → ( 𝑏 ⊆ 𝑦 ↔ 𝑐 ⊆ 𝑦 ) ) |
24 |
|
eleq1w |
⊢ ( 𝑏 = 𝑐 → ( 𝑏 ∈ Fin ↔ 𝑐 ∈ Fin ) ) |
25 |
23 24
|
imbi12d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ↔ ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ) ) |
26 |
25
|
cbvalvw |
⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ↔ ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ) |
27 |
|
simp1 |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ) |
28 |
|
snssi |
⊢ ( 𝑧 ∈ 𝑏 → { 𝑧 } ⊆ 𝑏 ) |
29 |
|
undif |
⊢ ( { 𝑧 } ⊆ 𝑏 ↔ ( { 𝑧 } ∪ ( 𝑏 ∖ { 𝑧 } ) ) = 𝑏 ) |
30 |
28 29
|
sylib |
⊢ ( 𝑧 ∈ 𝑏 → ( { 𝑧 } ∪ ( 𝑏 ∖ { 𝑧 } ) ) = 𝑏 ) |
31 |
|
uncom |
⊢ ( { 𝑧 } ∪ ( 𝑏 ∖ { 𝑧 } ) ) = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) |
32 |
30 31
|
eqtr3di |
⊢ ( 𝑧 ∈ 𝑏 → 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) |
33 |
|
uncom |
⊢ ( 𝑦 ∪ { 𝑧 } ) = ( { 𝑧 } ∪ 𝑦 ) |
34 |
33
|
sseq2i |
⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ) |
35 |
|
ssundif |
⊢ ( 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
36 |
34 35
|
sylbb |
⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
37 |
32 36
|
anim12ci |
⊢ ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) |
38 |
37
|
3adant1 |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) |
39 |
|
3anass |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ↔ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) ) |
40 |
27 38 39
|
sylanbrc |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) |
41 |
|
vex |
⊢ 𝑏 ∈ V |
42 |
41
|
difexi |
⊢ ( 𝑏 ∖ { 𝑧 } ) ∈ V |
43 |
|
sseq1 |
⊢ ( 𝑐 = ( 𝑏 ∖ { 𝑧 } ) → ( 𝑐 ⊆ 𝑦 ↔ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) ) |
44 |
|
eleq1 |
⊢ ( 𝑐 = ( 𝑏 ∖ { 𝑧 } ) → ( 𝑐 ∈ Fin ↔ ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) ) |
45 |
43 44
|
imbi12d |
⊢ ( 𝑐 = ( 𝑏 ∖ { 𝑧 } ) → ( ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ↔ ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 → ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) ) ) |
46 |
42 45
|
spcv |
⊢ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) → ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 → ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) ) |
47 |
46
|
imp |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) → ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) |
48 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
49 |
|
unfi |
⊢ ( ( ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ) |
50 |
47 48 49
|
sylancl |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) → ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ) |
51 |
|
eleq1 |
⊢ ( 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) → ( 𝑏 ∈ Fin ↔ ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ) ) |
52 |
51
|
biimparc |
⊢ ( ( ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) |
53 |
50 52
|
stoic3 |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) |
54 |
40 53
|
syl |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) |
55 |
54
|
3expib |
⊢ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) → ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
56 |
55
|
alrimiv |
⊢ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) → ∀ 𝑏 ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
57 |
26 56
|
sylbi |
⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
58 |
|
disjsn |
⊢ ( ( 𝑏 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑏 ) |
59 |
|
disjssun |
⊢ ( ( 𝑏 ∩ { 𝑧 } ) = ∅ → ( 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ 𝑏 ⊆ 𝑦 ) ) |
60 |
58 59
|
sylbir |
⊢ ( ¬ 𝑧 ∈ 𝑏 → ( 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ 𝑏 ⊆ 𝑦 ) ) |
61 |
60
|
biimpa |
⊢ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ) → 𝑏 ⊆ 𝑦 ) |
62 |
34 61
|
sylan2b |
⊢ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ⊆ 𝑦 ) |
63 |
62
|
imim1i |
⊢ ( ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
64 |
63
|
alimi |
⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
65 |
|
exmid |
⊢ ( 𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏 ) |
66 |
65
|
jctl |
⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏 ) ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
67 |
|
andir |
⊢ ( ( ( 𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏 ) ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ↔ ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ∨ ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
68 |
66 67
|
sylib |
⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ∨ ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
69 |
|
pm3.44 |
⊢ ( ( ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ∧ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) → ( ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ∨ ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑏 ∈ Fin ) ) |
70 |
68 69
|
syl5 |
⊢ ( ( ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ∧ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) → ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) |
71 |
70
|
alanimi |
⊢ ( ( ∀ 𝑏 ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ∧ ∀ 𝑏 ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) → ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) |
72 |
57 64 71
|
syl2anc |
⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) |
73 |
72
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) ) |
74 |
9 12 15 18 22 73
|
findcard2 |
⊢ ( 𝐴 ∈ Fin → ∀ 𝑏 ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) |
75 |
74
|
19.21bi |
⊢ ( 𝐴 ∈ Fin → ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) |
76 |
6 75
|
vtoclg |
⊢ ( 𝐵 ∈ V → ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
77 |
76
|
impd |
⊢ ( 𝐵 ∈ V → ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) ) |
78 |
2 77
|
mpcom |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |