| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uneq2 | 
							⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  →  ( ( 𝐴  ∩  𝐶 )  ∪  ( 𝐴  ∩  𝐵 ) )  =  ( ( 𝐴  ∩  𝐶 )  ∪  ∅ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							indi | 
							⊢ ( 𝐴  ∩  ( 𝐵  ∪  𝐶 ) )  =  ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐴  ∩  𝐶 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							equncomi | 
							⊢ ( 𝐴  ∩  ( 𝐵  ∪  𝐶 ) )  =  ( ( 𝐴  ∩  𝐶 )  ∪  ( 𝐴  ∩  𝐵 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							un0 | 
							⊢ ( ( 𝐴  ∩  𝐶 )  ∪  ∅ )  =  ( 𝐴  ∩  𝐶 )  | 
						
						
							| 5 | 
							
								4
							 | 
							eqcomi | 
							⊢ ( 𝐴  ∩  𝐶 )  =  ( ( 𝐴  ∩  𝐶 )  ∪  ∅ )  | 
						
						
							| 6 | 
							
								1 3 5
							 | 
							3eqtr4g | 
							⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  →  ( 𝐴  ∩  ( 𝐵  ∪  𝐶 ) )  =  ( 𝐴  ∩  𝐶 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq1d | 
							⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  →  ( ( 𝐴  ∩  ( 𝐵  ∪  𝐶 ) )  =  𝐴  ↔  ( 𝐴  ∩  𝐶 )  =  𝐴 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							dfss2 | 
							⊢ ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  ↔  ( 𝐴  ∩  ( 𝐵  ∪  𝐶 ) )  =  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							dfss2 | 
							⊢ ( 𝐴  ⊆  𝐶  ↔  ( 𝐴  ∩  𝐶 )  =  𝐴 )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							3bitr4g | 
							⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  →  ( 𝐴  ⊆  ( 𝐵  ∪  𝐶 )  ↔  𝐴  ⊆  𝐶 ) )  |