Step |
Hyp |
Ref |
Expression |
1 |
|
uneq2 |
|- ( ( A i^i B ) = (/) -> ( ( A i^i C ) u. ( A i^i B ) ) = ( ( A i^i C ) u. (/) ) ) |
2 |
|
indi |
|- ( A i^i ( B u. C ) ) = ( ( A i^i B ) u. ( A i^i C ) ) |
3 |
2
|
equncomi |
|- ( A i^i ( B u. C ) ) = ( ( A i^i C ) u. ( A i^i B ) ) |
4 |
|
un0 |
|- ( ( A i^i C ) u. (/) ) = ( A i^i C ) |
5 |
4
|
eqcomi |
|- ( A i^i C ) = ( ( A i^i C ) u. (/) ) |
6 |
1 3 5
|
3eqtr4g |
|- ( ( A i^i B ) = (/) -> ( A i^i ( B u. C ) ) = ( A i^i C ) ) |
7 |
6
|
eqeq1d |
|- ( ( A i^i B ) = (/) -> ( ( A i^i ( B u. C ) ) = A <-> ( A i^i C ) = A ) ) |
8 |
|
df-ss |
|- ( A C_ ( B u. C ) <-> ( A i^i ( B u. C ) ) = A ) |
9 |
|
df-ss |
|- ( A C_ C <-> ( A i^i C ) = A ) |
10 |
7 8 9
|
3bitr4g |
|- ( ( A i^i B ) = (/) -> ( A C_ ( B u. C ) <-> A C_ C ) ) |