Metamath Proof Explorer


Theorem un0

Description: The union of a class with the empty set is itself. Theorem 24 of Suppes p. 27. (Contributed by NM, 15-Jul-1993)

Ref Expression
Assertion un0
|- ( A u. (/) ) = A

Proof

Step Hyp Ref Expression
1 noel
 |-  -. x e. (/)
2 1 biorfi
 |-  ( x e. A <-> ( x e. A \/ x e. (/) ) )
3 2 bicomi
 |-  ( ( x e. A \/ x e. (/) ) <-> x e. A )
4 3 uneqri
 |-  ( A u. (/) ) = A