Metamath Proof Explorer


Theorem un0

Description: The union of a class with the empty set is itself. Theorem 24 of Suppes p. 27. (Contributed by NM, 15-Jul-1993)

Ref Expression
Assertion un0 A=A

Proof

Step Hyp Ref Expression
1 noel ¬x
2 1 biorfi xAxAx
3 2 bicomi xAxxA
4 3 uneqri A=A