| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suppss2.n |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) |
| 2 |
|
suppss2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
| 4 |
2
|
adantl |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝐴 ∈ 𝑉 ) |
| 5 |
|
simpl |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝑍 ∈ V ) |
| 6 |
3 4 5
|
mptsuppdifd |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) = { 𝑘 ∈ 𝐴 ∣ 𝐵 ∈ ( V ∖ { 𝑍 } ) } ) |
| 7 |
|
eldifsni |
⊢ ( 𝐵 ∈ ( V ∖ { 𝑍 } ) → 𝐵 ≠ 𝑍 ) |
| 8 |
|
eldif |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊 ) ) |
| 9 |
1
|
adantll |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) |
| 10 |
8 9
|
sylan2br |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊 ) ) → 𝐵 = 𝑍 ) |
| 11 |
10
|
expr |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ 𝑘 ∈ 𝑊 → 𝐵 = 𝑍 ) ) |
| 12 |
11
|
necon1ad |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ≠ 𝑍 → 𝑘 ∈ 𝑊 ) ) |
| 13 |
7 12
|
syl5 |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ∈ ( V ∖ { 𝑍 } ) → 𝑘 ∈ 𝑊 ) ) |
| 14 |
13
|
3impia |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ( V ∖ { 𝑍 } ) ) → 𝑘 ∈ 𝑊 ) |
| 15 |
14
|
rabssdv |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → { 𝑘 ∈ 𝐴 ∣ 𝐵 ∈ ( V ∖ { 𝑍 } ) } ⊆ 𝑊 ) |
| 16 |
6 15
|
eqsstrd |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |
| 17 |
16
|
ex |
⊢ ( 𝑍 ∈ V → ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) ) |
| 18 |
|
id |
⊢ ( ¬ 𝑍 ∈ V → ¬ 𝑍 ∈ V ) |
| 19 |
18
|
intnand |
⊢ ( ¬ 𝑍 ∈ V → ¬ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ∧ 𝑍 ∈ V ) ) |
| 20 |
|
supp0prc |
⊢ ( ¬ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) = ∅ ) |
| 21 |
19 20
|
syl |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) = ∅ ) |
| 22 |
|
0ss |
⊢ ∅ ⊆ 𝑊 |
| 23 |
21 22
|
eqsstrdi |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |
| 24 |
23
|
a1d |
⊢ ( ¬ 𝑍 ∈ V → ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) ) |
| 25 |
17 24
|
pm2.61i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |