Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppsssn.n | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊 ) → 𝐵 = 𝑍 ) | |
| suppsssn.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | suppsssn | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ { 𝑊 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppsssn.n | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊 ) → 𝐵 = 𝑍 ) | |
| 2 | suppsssn.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | eldifsn | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑊 } ) ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊 ) ) | |
| 4 | 1 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊 ) ) → 𝐵 = 𝑍 ) |
| 5 | 3 4 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑊 } ) ) → 𝐵 = 𝑍 ) |
| 6 | 5 2 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ { 𝑊 } ) |