Description: Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | neneqd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
Assertion | neneqd | ⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneqd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
2 | df-ne | ⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) | |
3 | 1 2 | sylib | ⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |